Título: CONVNEXT FOR THE CLASSIFICATION OF ORAL POTENTIALLY MALIGNANT DISORDERS AND SQUAMOUS CELL CARCINOMA
Nome do Apresentador: Anna Luiza Damaceno ARAUJO
Categoria do Trabalho: Painel de pesquisa científica (PPC)
Área Temática: Estomatologia
Resumo: Objective: To implement a Deep Learning model for automatic classification of clinical photographs into potentially malignant and malignant lesions.Study Design: A dataset of 527 clinical images from three institutions was used to train (n=519) and validate (n=58) a ConvNext. The CNN was pre-trained on the ImageNet dataset and fine-tuned with the training subset, with the Adam optimizer at a learning rate of 0.0001.Results: The model reached a mean accuracy of 0.98, precision of 0.98, recall of 0.98 and F1score of 0.98 during training. The internal validation reached a mean accuracy of 0.81, precision of 0.80, recall of 0.82 and F1score of 0.80.Conclusion: These preliminary results demonstrate a great performance of a Deep Learning algorithm for classifying potentially malignant and malignant lesions, which can be a premise of an innovative non-invasive screening tool for cancer detection. Further steps will seek to extend the dataset and perform external test to better evaluate the model´s generalization capabilities.
Autor 1: Anna Luiza Damaceno ARAUJO
E-mail 1: [email protected]
Autor 2: Eduardo Santos Carlos DE SOUZA
E-mail 2: [email protected]
Autor 3 : Cristina SALDIVIA-SIRACUSA
E-mail 3: [email protected]
Autor 4: Marcio Ajudarte LOPES
E-mail 4: [email protected]
Autor 5: André Carlos Ponce de Leon Ferreira DE CARVALHO
E-mail 5: [email protected]
Autor 6: Alan Roger SANTOS-SILVA
E-mail 6: [email protected]
Autor 7: Luiz Paulo KOWALSKI
E-mail 7: [email protected]
Para baixar o aplicativo, escolha abaixo: